By hooking a computer up to a machine that can add, remove, cut or fuse material, it is possible to turn a digital representation into a physical object. Most historians (at least ones reading this blog) are probably familiar with the idea of digitization; think of this as 'materialization', a reversal of the process. The humble printer is a kind of materializer for two-dimensional text and images. These other machines (often referred to as rapid prototyping or computer-aided manufacturing machines, or even 'replicators') allow their users to make manifest three-dimensional objects of plastic, wood, metal, or fancier composites.
Over the past few years, the price of rapid fabrication has been dropping, well, rapidly. A lab that once cost hundreds of thousands or millions of dollars can now be had for less than $20,000. Enthusiasts predict that the age of desktop fabrication is nigh; in the next few years we will all have devices on our desks that can print out 3D objects. (Neil Gershenfeld's Fab is a good introduction to some of the possibilities.) Small groups of DIY makers and hardware hackers are busy in their garages and attics trying to create a printer that can print a copy of itself, a machine that can print out a flashlight, one that can print a torroidal coil of candy, or burn a message into your morning toast. The popular appeal of all this activity is clear in the pages of MAKE magazine, or in the Discovery Channel's new show, "Prototype This".
There are a number of reasons why historians and other humanists should be getting involved in desktop fabrication right now. Here are a few.
We can't predict the future. In the 1960s, for example, it wasn't clear to everyone that there would ever be much reason for individuals to have the undivided attention of a single computer (never mind the dozens that we each now monopolize without thinking about it.) In retrospect, the people who struggled to get individual access to computers, who bought them from mail-order catalogs and built them at home, who taught themselves how to program even when that meant reading thick manuals and punching cards... well, now we know how that turned out. Using a computer-controlled soldering iron to fuse grains of sugar into candy sculptures may seem a bit tangential to the serious business of academia, but it's really too soon to judge.
Mind and hand. Just because the separation between thinking and making is longstanding and well-entrenched doesn't make it a good idea. At various times in the past, humanists have been deeply involved in making stuff: Archimedes, the Banu Musa brothers, da Vinci, Vaucanson, the Lunar Men, Bauhaus, W. Grey Walter, Gordon Mumma. The list could easily be multiplied into every time and place, but the main point is that getting your hands dirty might be worthwhile, even if you're not da Vinci.
Historic experimentation. People who work with material culture, the history of technology or experimental archaeology know that you can learn a lot about the past by handling physical stuff. Until recently, that usually meant that you needed to have direct access to the stuff itself. Now it is possible to fabricate physical models or artifacts that share properties with possibly rare or priceless originals. Paleontologists and zooarchaeologists can learn from 3D printouts of bones and fossils. Historians of science can more readily replicate past experiments. And so on.
Tangible / haptic history. More generally, it will become possible to materialize shapes, surfaces, textures and artifacts that resemble those of the past, and that can be touched, felt, handled, and manipulated. It is easy to imagine a new tangible or haptic history that follows and extends the sensory histories that are being written right now.
Critical technical practice. In the late 1990s, Philip Agre argued for a mode of research that involved both "the craft work of design and ... the reflexive work of critique." The benefits of this approach are already apparent in the digital humanities, where historians, anthropologists, archaeologists, artists, literary and media scholars, and their colleagues are busy both creating and critiquing digital sources. Why not extend this practice to rapid fabrication, microelectronics, new materials, robotics or nanotechnology?
Some of the barriers are easily overcome. When someone asks me why a historian would need an 8-axis CNC milling machine or an oscilloscope, I say, "Why not?" The limitations of our physical spaces can be more difficult to circumvent. Most of the teaching and research environments available to humanists at my university are designed to support solitary or small-group office work. These spaces are almost comically unsuitable for the kinds of things I try to do with my students: soldering, moldmaking and casting, building and lighting physical exhibits, programming in groups, creating displays or signage. Although I could afford to purchase a laser cutter, I can't vent the poisonous fumes from my workspace. Cutting wood with power tools will set off the fire alarm. I certainly couldn't set up a little foundry to explore the bootstrapping process that led from metal casting to machine tools. There isn't even anywhere to lock up student project prototypes so they won't be stolen or vandalized. When I have a chance to talk to planners or people purchasing furniture or whatever, I ask them to imagine spaces that are appropriate for an art class or a shop class: high ceiling, natural light, plenty of ventilation, cement flooring, workbenches on casters, locking cabinets, big blank walls that you can hang things on. No carpeting, no beige cubicles, no coffee tables with plants. Humanists won't be able to think of themselves as makers until we create spaces for them to make things in.
Tags: bricolage | DIY | fabrication | hacking | physical computing